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Note 

An Analytic Green’s Functions Method in 
Pseudo-Spectral Navier-Stokes Solvers for 

Boundary Layer and Channel Flows 

In pseudo-spectral simulations of a flow between rigid parallel plates with 
periodic boundary conditions in the horizontal directions, a number of different 
numerical methods are currently in use. These methods are briefly reviewed by 
Gottlieb et al. [ 11. The differences among the methods amount essentially to 
different ways of imposing the incompressibility condition on the flow and this in 
turn is directly related to their efficiency in terms of computer storage and time 
required to perform simulations with a given spatial and temporal resolution. All 
these methods [2-S] treat the nonlinear terms in the Navier-Stokes equations 
explicitly and the pressure and viscous terms implicitly. The implicit part must be 
solved by inverting matrices resulting from spatial discretization of the pressure and 
viscous terms. 

The most efficient methods in terms of computer time and storage are based on 
expansions of the velocity field into divergence free basis functions [4, 51. Their dis- 
advantage is that the basis functions must be constructed individually for each flow 
geometry and the inversion of the resulting matrices may require new algorithms 
for each geometry. For that reason, methods that can be reduced to solving sequen- 
ces of standard Poisson and Helmholtz equations are more popular. Among these 
methods the most efficient is the full time splitting method of Orszag and Kells [S] 
that requires inversion of four N by N matrices for each horizontal wavenumber 
(k,, k,), where N is the number of mesh points between the plates. The matrices 
result from a sequence of four Poisson and Helmholtz equations and a variety of 
numerical schemes exist to acomplish inversions efficiently. The disadvantage of this 
method is that it violates incompressibility in a numerical boundary layer of thick- 
ness O((v At)“‘) at the plates [6] and for this reason it is not used very frequently. 

Incompressibility may be enforced by using the capacitance matrix algorithm of 
Kleiser and Schumann [7] or the equivalent Green’s functions method of 
Marcus [3]. The Green’s functions method of Marcus [3] may be implemented 
also with four Poisson solvers but ensures incompressibility at the expense of 
increasing storage requirements by two auxiliary arrays of size N3. However, such 
storage is usually not available in high resolution numerical simulations and in 
commonly used Green’s functions methods storage requirements are reduced to 
those in the full time splitting method, but required computer time increases since 
six instead of four Poisson equations must then be solved. Orszag et al. [6] discuss 
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such a Green’s functions method for a channel flow that requires six Poisson 
solvers. The capacitance matrix algorithm of Kleiser and Schumann [7] also 
requires six Helmholtz solvers. In essence, the Green’s functions methods use either 
more computer time or storage than the full time splitting method. This addi~o~a~ 
work or storage is a consequence of a need to enforce incompressibility violated by 
the full time splitting method. 

The purpose of this note is to demonstrate that for channel and for 
boundary layer flow the Green’s functions method may be implemented 
four instead of six Poisson solvers per time step. The savings come from 
vation that two of six Poisson equations may be solved analytically in t 
elementary functions. The implementation of the method is straightfo 
existing pseudo-spectral computer codes may be easily modi~ed bringin 
the computer time. The modifications are described for both a ch 
boundary layer code. 

Fluid is contained between two rigid parallel plates (channel flow) or above one 
horizontal plate (boundary layer flow). The z axis of the frame of refer 
pendicular to the plates. The velocity field is decomposed into a presc 
independent mean velocity V(z) = (U(z), 0,O) in the x direction and a p 
velocity v(x, y, z) = (u, 0, w). The mean velocity is chosen to satisfy the 
conditions for the entire flow, e.g., U(z) is the Blasius profile for the boun 
flow or a parabolic profile for the channel flow. Therefore the perturbatio 

.sfies homogeneous boundary conditions at the horizontal boundaries. 
omposition the Navier-Stokes equations are 

where cr) = V x v is the vorticity and 17 =p/p + 1/2v* is the pressure head where p is 
the pressure, p is the density, and v is the kinematic viscosity. 

Equations (1) are solved by the following pseudo-spectral time splitting met 
consisting of three separate fractional steps which advance flow velocities from time 
t, to fn+l. In Eq. (la) the nonlinear term is separated into two components. In 
first fractional step, the component in the square brackets is calculated. pseu 
spectrally and advanced in time using the explicit Adams-Basbforth scheme. In the 
second fractional step, the advection part of the nonlinear term is diag~~a~~e~ by 
Fourier expansion and is solved by the implicit Crank-Nicolson scheme to reduce 
the convective stability restrictions due to the large mean flow U(z). The inter- 
mediate velocities resulting from application of these two fractional steps will be 
denoted by asterisks. In the third fractional step, pressure and viscous terms with 
incompressibility (lb) are solved by the Green’s functions method as described 
Marcus [3] for Couette flow and outlined by Grszag et al. 1[6] for channe 
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leading to the final velocities at time t, + i . Using Fourier expansions in the horizon- 
tal directions for the dependent variable 

where k,=2nm/L,, k,=2xn/L, are the horizontal wavenumbers and L, and L, 
are the periodicity lengths, the following equations in spectral space are obtained 
from the pressure and the viscous terms at the last fractional step 

azi 
at- - -ik,ii+v $-k:-k; (ti+ 8(z)) 

a6 a” 
at- - -ik,l?+v s-kj-k: fi 

a$ 
-=-El?+, at G’, 

where 6(z) is the horizontal Fourier transform of the mean velocity U(z), which is 
nonzero only for (k,, ky) = 0. The continuity equation (lb) becomes 

” 

ik,li+ik,z?+~=O. 

Equations (3) are discretized in time using the Crank-Nicolson method for the 
viscous term and the full implicit method for the pressure term. Eliminating l? from 
(3a) and (3b), and using the incompressibility condition (4) we get an equation for 
W “n+ ‘, the vertical component of the velocity at time t, + i, 

(D2-k2) D2-k2--$)l/*+1(k,,ky,z)=g(k,,ky,i), 
( 

where 

> 
[D(ik,~*+ik,d*)+k2~*]. 

In (5) and (6) k2= kz + k$ D = a/az and velocities denoted by asterisks are the 
results of the first two fractional steps. Note that these velocities do not satisfy 
incompressibility since this condition is imposed only at the last fractional step, so 
that the velocity is divergence free after the full time step. Equation (5) must be 
solved for each horizontal wavenumber (k,, k,) with the boundary conditions 
W “n+ ’ = 0 and DW+ ’ = 0. The latter condition follows from (4). In boundary layer 
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flow this condition is used only at the lower boundary z = 0. Once 6” + r is found 
then the expression for I?“+’ is 

n ̂n+l= -v 2k2 (D”k’)(ik,p’+rk,L’*--Dri.+‘)+~~(ik~~*+ik,~.+nj,~+‘)l. 
i 

VI 

The horizontal velocity components are obtained from the following ~~l~ho~t~ 
equations 

c 
\ 

p-p-$ p&A& > [ik, A&“+ 1 - 6*-j - (D2 - k2)(C* + 20’(z)) (8) 

[ik, Ad!“+’ -v”*3 - (P-k2) o*. 

In what follows let us assume that we have efficient numerical solvers for t 
channel and the boundary layer flow geometry for the Poisson equation 

to2 - k2) f(k,, k,, z) = dk,, k,, z) (POa) 

and the Helmholtz equation 

i 
n’-k’-$ f(k,,ky,z)=g(k,,k,,z) 

> 

with homogeneous Dirichlet boundary conditions. With these solvers it is a 
straightforward task to solve Eqs. (8) and (9) for Zinfl and $“+I. Equation (5) will 
be solved by a modified Green’s functions method. 

BOUNDARY LAYER FLOW 

Equation (5) must be solved for all pairs of horizontal wavenumbers (k,, ky) in 
the domain z E [0, co) with the boundary conditions 

G(O) = lqco) = I.G(O) = 0. 6111 

Note that in (1 I ) and in all subsequent formulae explicit dependence of various 
functions on k,, k, is often omitted if it does not lead to confusion. The solution 
of (5) is obtained as 

G(z) = b- w-(z) + w,(z), (12) 
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where w0 is obtained by solving the sequence of equations 

( D2-k2-$ io(z)=g(z); > i,(O) = io(a) = 0 
(D2 - k2) wok) = iob); w,(0)=w,(m)=0 (13b) 

and w-(z) is obtained by solving 

D2-k2-& ip(z)=O; 
) 

[-(O)=l,i-(co)=0 (14a) 

(D2-k2)w_(z)=(-(z); w~(o)=w~(a3)=o. (14b) 

Constant b- is determined in such a way that the boundary condition (11) for 
0$(z) is satisfied, 

b _ = -Dwo(0)/Dw _ (0). (15) 

In the Green’s functions method described in [6] if the function w- (the Green’s 
function for this problem) is found in the preprocessing step and is stored, the solu- 
tion of (5) requires solution of the two equations (13a) and (13b). If storage is 
limited only the boundary values Dw- (0) are stored. To get +‘, after finding w. 
from (13) and b _ from (15) Eqs. (13) are solved once more with the following 
boundary conditions: 

[(O)=b-, [(a)=O; G(O)=O, B(co)=O. (16) 

Thus finding + is equivalent to solving numerically four Poisson equations. 
A simplification of the Green’s function method discussed here is based on the 

observation that Eqs. (14) for the Green’s functions may be solved analytically. 
Indeed, the solution to Eq. (14a) is 

(_ (z) = exp( - rcz), 

where IC = (k2 + 2/(v dt))lj2. A solution to Eq. (14b) is sought as 

w-(z)=AeCKZ+Be-k”. 

(17) 

(18) 

Equation (14b) and the boundary conditions are satisfied if 

A= -B=vAt/Z 

The derivative of w _ at the boundary needed in (15) is 

Dw h(O) = 0.5~ At(k - K). 

(19) 

(20) 
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After numerically solving the two equations (13a) and (13b), the complete so~~t~~~ 
I+(Z) is found from (12), (15), and (lS)-(20). The work require is therefore 
equivalent to solving numerically only two Poisson equations 

CHANNEL FLOW 

In the case of the channel flow, Eq. (5) must be solved in the ~ornai~ 
z E [ - 1, + I] with the following boundary conditions 

G(-l)=G(+l)=LG(-l)=LG(+l)=O. (21) 

In the Green’s functions approach [6] this is done by representing the soluticsn I$ 
as 

B(z)=b-w-(z)+b+w+(z)+w,(z), !22) 

where w0 is obtained from Eqs. (13) with zero boundary conditions at z = Fl, and 
the functions w+ are solutions of the following sequence of equations 

D’-k2-j$ [+(z)=O; 
> 

i-f-l)=i,(+l)= 1; 

i+(-l)=L(+1)=0; 

Constants bi will be determined from the boundary conditions for DG( i- i) (Eq. 
(21))‘ 

As in the case of the boundary layer flow Eqs. (23) may be solved a~a~yt~~a~~y” 
The solution of (23a) is 

where K = (k’ + 2/(v dt))‘/*, and 

A_= 
1 

p _ e-3K’ B-= eK1 
e - (?3K’ 

A+=B_: B, =A-. (25) 

A solution to Eq. (23b) is sought in the following form 
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The constants in (26) are determined from Eq. (23b) and its boundary conditions 

c- = 

v At/2 v At/2 
--Kve3u9 De= 

e eK-e-3K 

E- = - 
v At/2 

Fp = - 
v At/2 

e-k-e3k, ek-e-3k 

V’a), W’b) 

(27~)~ (274 

C,=D-, D,=C-, E, =F-, F,=E-. We) 

The boundary conditions (21) are used to get a system of linear equations for b, , 

b+Dw+(fl)+b-Dwp(fl)= -Dw,(+l). (28) 

Using symmetries (27e) we get 

Dw-(+l)= -Dw+(Tl) (29) 

and the explicit expression for b, is obtained from (28) 

b =(-Dw+(f1)Dw,(+1)+Dw+(f1)Dw,(-l)) 
f (Dw+(+~)~-Dw+(---~)*) ’ (30) 

Expressions for Dw+( + 1) are gotten from (26), 

@la) Dw+(-l)=;v At 2K. 2k 

e2K-,-2x-e2k-,-2k 1 
Dw+(+l)=;vAt ~-- 1 .-e-4x 1 1 -e4K 1 -.mi..---....- 1 -g’k 1we4k 1 ’ @lb) 

Note that the solution procedure must be modified for the wavenumber k = 0, since 
in this case a solution to (23b) is 

w+(z)=C+e”“+D+e-““+E,z+F*. (32) - - 

In (32) the constants C+, D, are given by (27a), (27b), and (27e) and 

E_= -FM=+At, E,=F,= +At. (33) 

The complete solution is determined by Eq. (22), where w,, is obtained by numeri- 
cally solving the two equations (13), w + are given by (26) (or (32) for k = 0), and 
constants b, are given by Eq. (30). Formula (30) involves derivatives of the exact 
solution w, and the solution w0 which are calculated numerically with necessarily 
finite accuracy. For the vertical resolution N< 32 modes combining derivatives of 
the analytical and the numerical solutions led to slight errors in the constants b, . 
In such a case it is advisable to use in (30) boundary derivatives of the function w+ 
computed numerically in the pre-processing step. This results in cancellation of 
errors and improved accuracy for the constants b, . For N> 64 this method does 
not improve accuracy any further and formulas (30) and (31) should be used. 
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TABLE I 

Comparison between Growth Rates of the 
Tollmien-Schlichting Waves Obtained from the 

Orr-Sommerfeld Equation (oos) and from 
the Navier-Stokes Solver (wNs). 

1500 -0.0010049 -0.0010048 1O-4 
1800 -0.0000991 -0.0000990 10-3 
2100 +0.0005267 +0.0005269 3 x 1o-4 

Note. The relative error E = (oNs - wos)/wos 

NUMERICAL EXAMPLE 

To test the above method a pseudo-spectral boundary layer code used previously 
by Domaradzki and Metcalfe [9] was modified according to these ideas. The code 
used in [9] was derived from the channel code of Orszag and Kells [S] and uses 
the full time splitting method which is known to violate the incompressibility condi- 
tion. For this reason it generally produces results that are significantly less accurate 
than results obtained by numerical codes that satisfy incompressibility. A standard 
test of the accuracy of a boundary layer and a channel flow code is made by 
comparing growth rates of modes calculated from the Qrr-Sommerfeld equation 
with growth rates of the same modes predicted by the Navier-Stokes code. 

We have performed such tests for the modified code. The Navier-Stokes sirn~la~ 
tions were initialized with the velocity fields obtained from the most unstable mode 
of the Orr-Sommerfeld equation for a wavenumber a = 1.0 and three rent 
Reynolds numbers (based on the boundary layer thickness de as 
6= 6.02(v~/U,)‘/~). The amplitude of the wave was chosen as 1O-5 of the free 
stream velocity U,, so that the nonlinear effects were small. Simulations were 
two-dimensional with 65 mesh points in the vertical and 8 points in the horizontal 
direction. In Table I the comparison is presented between growth rates of the 
Tollmien-Schlichting waves obtained from the Orr-Sommerfeld solver and results 
of numerical solution of the Navier-Stokes equation after 50 time steps. For all 
three cases the growth rates predicted by the Navier-Stokes solver agree with the 
growth rates calculated from the Orr-Sommerfeld equation up to six signi~~a~t 
figures. This accuracy matches the accuracy of results obtained by Marcus [3 
a similar test problem for his divergence free code for Couette flow (see Table 
131). Also the relative error E is generally about- two orders of magnitude less than 
the error observed in simulations performed with the full time splitting method used 
in [9] for the boundary layer and in [S] for the channel flow. 

In Table II timings for the analytical and numerical Green’s functions ~~etbQds 
are presented for the boundary layer code run with a resolution of 643 modes on 
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TABLE II 

CPU Timings (in Seconds) for Different Implementations 
of the Green’s Functions Method 

Method Full step 3rd step Poisson solver 

NA 12.20 9.37 0.50 
AA 11.03 8.25 0.50 
NF 19.26 16.34 1.64 
AF 15.40 12.58 1.58 

Note. NA-numerical with an assembly Poisson solver; 
AA-analytical with an assembly Poisson solver; NF- 
numerical with a Fortran Poisson solver; AF-analytical 
with a Fortran Poisson solver. Timings are for the full time 
step, the third fractional step (the pressure and viscous 
step), and the Poisson solver. 

the Cray X-MP. Using the analytical Green’s functions reduces required CPU time 
by about 10% (time needed to solve two Poisson equations) as compared with the 
methods discussed in [6, 71 which solve all Poisson equations numerically. The 
above estimate should be considered as a lower bound since we used a highly 
optimized Poisson solver coded in the Assembly language on the Cray X-MP. For 
the same Poisson solver coded in Fortran savings in computer time are about 20% 
when using the analytical Green’s functions method instead of the numerical one, 
since two Poisson solvers saved constitute larger portion of the full time step than 
in the previous case. Similar savings were also observed after applying the analytical 
Green’s functions methods to modify the numerical code used by Domaradzki and 
Metcalfe [lo] to simulate Rayleigh-Benard convection between two rigid plates. 
The numerical Navier-Stokes solver in [lo] uses the Green’s functions method of 
reference [6]. How much time will precisely be saved in any particular case 
depends on details of a numerical code since savings are equivalent to time needed 
to solve two Poisson equations and this time may vary among different codes. In 
high resolution numerical simulations an increase by l&20% in an efficiency of a 
numerical code may translate into hours of supercomputer time saved per run. 

The incompressibility was checked by comparing individual terms au/ax, &lay, 
aw/dz with their sum, which should be equal to zero. At the first mesh.point away 
from the boundary z = 0.000186 the relative error is 2%, dropping to 0.03% at the 
second mesh point z = 0.00076, and to 0.001% at the third point z = 0.00176. This 
error in the divergence at the boundary is caused entirely by an inaccuracy of the 
order 10-i’ in the numerical calculation of the z-derivative in that region. Close to 
the boundary derivatives of the velocity are all of the order lo-* so that the 
absolute error of the order lo-” has an appreciable effect on the accuracy of the 
divergence. The relative error in the divergence becomes uniformly less than 1O-8 
for z > 0.0156. 



ANALYTIC GREEN'S FUNCTIONS METHOD 241 

CONCLUSIONS 

We have shown that the Green’s functions method [3,6,7] for the channel and 
the flat piate boundary layer flow may be modified by solving analytically several 
equations that are usually solved numerically. This modification reduces from six to 
four the number of Poisson and Helmholtz equations that must be solved numeri- 
cally at each time step. For a typical pseudo-spectral Navier-Stokes solver 
modifications saves about 10% of computer time as compared with the orig 
method that solves all equations numerically. The amount of required corn~~te~ 
time may be reduced even further as follows. If the vertical component of velocity 
w is known and one of the horizontal components of velocit (u) is determined 
from (8) then the other horizontal component may be obtain from the incom- 
pressibility condition instead of Poisson Eq. (9). This reduces to three the total 
number of Poisson solvers needed per time step. The implementation of the Green’s 
functions method described in this note is especially attractive in modifying existing 
pseudo-spectral codes that use either the Green’s functions method [S] or t 
equivalent capacitance matrix technique [7]. It may also be attractive in t 
development of new codes since an algorithm to solve efficiently Eqs. (1) may 
constructed from standard numerical building blocks: Fast Fourier Transform sub- 
routines to calculate the nonlinear terms and Poisson and Helmholtz solvers 
homogeneous Dirichlet boundary conditions) to treat viscous and pressure e 
The existence of the analytical Green’s functions in Navier-Stokes solvers for s 
flat plate and channel flow geometry also suggests that their existence in 
complicated geometries should be investigated. 
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